1,104 research outputs found

    Modeling Space-Charge Limited Currents in Organic Semiconductors: Extracting Trap Density and Mobility

    Full text link
    We have developed and applied a mobility edge model that takes into account drift and diffusion currents to characterize the space charge limited current in organic semiconductors. The numerical solution of the drift-diffusion equation allows the utilization of asymmetric contacts to describe the built-in potential within the device. The model has been applied to extract information of the distribution of traps from experimental current-voltage measurements of a rubrene single crystal from Krellner et al. [Phys. Rev. B, 75(24), 245115] showing excellent agreement across several orders of magnitude of current. Although the two contacts are made of the same metal, an energy offset of 580 meV between them, ascribed to differences in the deposition techniques (lamination vs. evaporation) was essential to correctly interpret the shape of the current-voltage characteristics at low voltage. A band mobility 0.13 cm2/Vs for holes was estimated, which is consistent with transport along the long axis of the orthorhombic unit cell. The total density of traps deeper than 0.1 eV was 2.2\times1016 cm-3. The sensitivity analysis and error estimation in the obtained parameters shows that it is not possible to accurately resolve the shape of the trap distribution for energies deeper than 0.3 eV or shallower than 0.1 eV above the valence band edge. The total number of traps deeper than 0.3 eV however can be estimated. Contact asymmetry and the diffusion component of the current play an important role in the description of the device at low bias, and are required to obtain reliable information about the distribution of deep traps

    A new Skyrme interaction with improved spin-isospin properties

    Get PDF
    A correct determination of the spin-isospin properties of the nuclear effective interaction should lead, among other improvements, to an accurate description of the Gamow-Teller Resonance (GTR). These nuclear excitations impact on a variety of physical processes: from the response in charge-exchange reactions of nuclei naturally present in the Earth, to the description of the stellar nucleosynthesis, and of the pre-supernova explosion core-collapse evolution of massive stars in the Universe. A reliable description of the GTR provides also stringent tests for neutrinoless double-β\beta decay calculations. We present a new Skyrme interaction as accurate as previous forces in the description of finite nuclei and of uniform matter properties around saturation density, and that account well for the GTR in 48{}^{48}Ca, 90{}^{90}Zr and 208{}^{208}Pb, the Isobaric Analog Resonance and the Spin Dipole Resonance in 90{}^{90}Zr and 208{}^{208}Pb.Comment: Predictions on the IAR and SDR and comparison with the SGII interaction for the GTRs where adde

    Enhanced material defect imaging with a radio-frequency atomic magnetometer

    Get PDF
    Imaging of structural defects in a material can be realized with a radio-frequency atomic magnetometer by monitoring the material’s response to a radio-frequency excitation field. We demonstrate two measurement configurations that enable the increase of the amplitude and phase contrast in images that represent a structural defect in electrically conductive and magnetically permeable samples. Both concepts involve the elimination of the excitation field component, orthogonal to the sample surface, from the atomic magnetometer signal. The first method relies on the implementation of a set of coils that directly compensates the excitation field component in the magnetometer signal. The second takes advantage of the fact that the radio-frequency magnetometer is not sensitive to the magnetic field oscillating along one of its axes. Results from simple modelling confirm the experimental observation and are discussed in detail

    Inductive imaging of the concealed defects with radio-frequency atomic magnetometers

    Get PDF
    We explore the capabilities of the radio-frequency atomic magnetometers in the non-destructive detection of concealed defects. We present results from the systematic magnetic inductive measurement of various defect types in an electrically conductive object at different rf field frequencies (0.4–12 kHz) that indicate the presence of an optimum operational frequency of the sensor. The optimum in the frequency dependence of the amplitude/phase contrast for defects under a 0.5–1.5 mm conductive barrier was observed within the 1–2 kHz frequency range. The experiments are performed in the self-compensated configuration that automatically removes the background signal created by the rf field producing object response

    Generation of atomic spin orientation with a linearly polarized beam in room-temperature alkali-metal vapor

    Get PDF
    Traditionally, atomic spin orientation is achieved by the transfer of angular momentum from polarized light to an atomic system. We demonstrate the mechanism of orientation generation in room-temperature caesium vapors that combines three elements: optical pumping, nonlinear spin dynamics, and spin-exchange collisions. Through the variation of the spin-exchange relaxation rate, the transition between an aligned and an oriented atomic sample is presented. The observation is performed by monitoring the atomic radio-frequency spectra. The measurement configuration discussed paves the way to simple and robust radio-frequency atomic magnetometers that are based on a single low-power laser diode that approach the performance of multilaser pump-probe systems

    Global Analysis of Nucleon Strange Form Factors at Low Q2Q^2

    Get PDF
    We perform a global analysis of all recent experimental data from elastic parity-violating electron scattering at low Q2Q^2. The values of the electric and magnetic strange form factors of the nucleon are determined at Q2=0.1Q^2 = 0.1 GeV/c2c^2 to be GEs=0.008±0.016G^s_E = -0.008 \pm 0.016 and GMs=0.29±0.21G^s_M = 0.29 \pm 0.21.Comment: 8 pages, 1 figur

    Energy distribution and cooling of a single atom in an optical tweezer

    Full text link
    We investigate experimentally the energy distribution of a single rubidium atom trapped in a strongly focused dipole trap under various cooling regimes. Using two different methods to measure the mean energy of the atom, we show that the energy distribution of the radiatively cooled atom is close to thermal. We then demonstrate how to reduce the energy of the single atom, first by adiabatic cooling, and then by truncating the Boltzmann distribution of the single atom. This provides a non-deterministic way to prepare atoms at low microKelvin temperatures, close to the ground state of the trapping potential.Comment: 9 pages, 6 figures, published in PR

    Second-order equation of state with the full Skyrme interaction: toward new effective interactions for beyond mean-field models

    Full text link
    In a quantum Fermi system the energy per particle calculated at the second order beyond the mean-field approximation diverges if a zero-range interaction is employed. We have previously analyzed this problem in symmetric nuclear matter by using a simplified nuclear Skyrme interaction, and proposed a strategy to treat such a divergence. In the present work, we extend the same strategy to the case of the full nuclear Skyrme interaction. Moreover we show that, in spite of the strong divergence (\sim Λ5\Lambda^5, where Λ\Lambda is the momentum cutoff) related to the velocity-dependent terms of the interaction, the adopted cutoff regularization can be always simultaneously performed for both symmetric and nuclear matter with different neutron-to-proton ratio. This paves the way to applications to finite nuclei.Comment: 15 figure

    Phenomenological Analysis of pppp and pˉp\bar{p}p Elastic Scattering Data in the Impact Parameter Space

    Full text link
    We use an almost model-independent analytical parameterization for pppp and pˉp\bar{p}p elastic scattering data to analyze the eikonal, profile, and inelastic overlap functions in the impact parameter space. Error propagation in the fit parameters allows estimations of uncertainty regions, improving the geometrical description of the hadron-hadron interaction. Several predictions are shown and, in particular, the prediction for pppp inelastic overlap function at s=14\sqrt{s}=14 TeV shows the saturation of the Froissart-Martin bound at LHC energies.Comment: 15 pages, 16 figure

    Carrier thermal escape in families of InAs/InP self-assembled quantum dots

    Full text link
    We investigate the thermal quenching of the multimodal photoluminescence from InAs/InP (001) self-assembled quantum dots. The temperature evolution of the photoluminescence spectra of two samples is followed from 10 K to 300 K. We develop a coupled rate-equation model that includes the effect of carrier thermal escape from a quantum dot to the wetting layer and to the InP matrix, followed by transport, recapture or non-radiative recombination. Our model reproduces the temperature dependence of the emission of each family of quantum dots with a single set of parameters. We find that the main escape mechanism of the carriers confined in the quantum dots is through thermal emission to the wetting layer. The activation energy for this process is found to be close to one-half the energy difference between that of a given family of quantum dots and that of the wetting layer as measured by photoluminescence excitation experiments. This indicates that electron and holes exit the InAs quantum dots as correlated pairs
    corecore